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1.0 INTRODUCTION 

Analysis of aerodynamic flows is used to support the development and evaluation of 

weapons systems tested in the ground test facilities at AEDC. Aerodynamic solutions are 
used in experimental test planning, test execution, and post-test analysis to increase test 
facility productivity, upgrade test data quality, and reduce test expense. The most direct 

approach to the computation of turbulent viscous flows, which are the types of flows usually 
encountered at AEDC, is to solve the Reynolds-averaged Navier-Stokes equations. Critical 
flow areas such as separated flows and shock/boundary layer interactions may be computed 
in this manner, thereby aiding in the evaluation of a specific test article or facility. 

Algorithms for solving the Navier-Stokes equations are extremely complex and require 
extensive computer resources. Therefore, it is economically expedient to explore alternative 
solution techniques which may be used in a flow evaluation without large computer resource 
requirements. An inexpensive approach to the problem is by means of a component method 
based on the assumption that the boundary-layer equations adequately describe the viscous 
layer near a wall or model, and that the exterior flow may be described by the inviscid 

equations. These two regions of flow may then be matched at a common boundary, usually 

the boundary-layer edge. 

This component type of flow solver has been shown to be an effective tool in the 

computation of viscous-inviscid interacting flows as cited by Lock (Ref. 1), Melnik (Ref. 2), 
and Le Balleur (Ref. 3). This method was demonstrated for two-dimensional and 
axisymmetric bodies with small separated flow regions in Ref. 4. Analysis of separated flows 
may be accomplished by computing the boundary-layer equations using an inverse method. 

A review of computational methods capable of separated flow solutions is given by Le 
Balleur (Ref. 3). An extension of inverse component methods to three-dimensional problems 
is feasible and has the potential for computing separated viscous flows over complex bodies 

with significantly less computer resources than Navier-Stokes methods. 

The component method may be referred to as the viscous-inviscid interaction procedure. 

Calculation of the inviscid exterior flow field can be obtained by solution of the Euler 
equations which approximate the Navier-Stokes equations as the Reynolds number 
approaches infinity (and removes all energy dissipation processes from the flow). The 
interior region may be computed with the boundary-layer equations obtained by imposing 
the Prandtl limit to the Navier-Stokes equations and may be approximately sol,,ed by the 
integral method. The exterior and interior regions about an airfoil are depicted in Fig. 1. 

A steady interaction code ! (one in which the boundary-layer solution method is not time- 

dependent) exists. It employs a two-dimensional integral compressible boundary-layer 

1 The terms "steady" and "unsteady" interactions refer to the boundary layer portion of the code only. The 
Euler code is time-dependent for both cases. 
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V i s c o u s  R e g i o n  

I n v i s c i d  R e g i o n  

Figure 1. Flow regions about an airfoil. 

method, developed by Whitfield (Ref. 5), in conjunction with a three-dimensional, time- 
dependent Euler code (Ref. 6). The two-dimensional boundary-layer method can be applied 
to a three-dimensional wing by using strip theory when the crossflow is small (since 
boundary layers are sensitive to small crossflow pressure gradients). Calculations of two- 
dimensional boundary layers are made at various spanwise cross sections. However, there 
exists a need for a fully three-dimensional viscous interaction method to be used for finite 
wing applications. This would allow flows to be analyzed with the boundary layers 

computed over complete wings. 

There are problems associated with a three-dimensional viscous-inviscid interaction 
code. In two-dimensional boundary-layer codes, the solution process marches in the flow 
direction and computes boundary-layer quantities at each spatial station. In three- 
dimensional problems the solution process is restricted to one direction but there are two 
computational directions (e.g., the chordwise and spanwise directions on a finite wing). If 
this problem is alleviated by aligning the computational mesh on the body with the flow 
direction, the mesh becomes flow-dependent and must be altered after each update to the 
flow. This makes any solution process both difficult and lengthy because of the constant 
altering of the mesh between the inviscid code and the boundary-layer code. Therefore, it 
would be useful to produce a boundary-layer method which utilizes the spacing of the 
inviscid mesh and still provides a solution on a three-dimensional body. This can be 
accomplished if the boundary-layer equations include the time-dependent terms and the 
entire boundary-layer on the body is solved at each instant in time. The solution process 
could march by means of a time-stepping parameter until a steady-state solution is obtained. 

However, before three-dimensional flow solutions are attempted by the unsteady 
boundary-layer method, attention should be focused on simpler two-dimensional problems 
solved by the same method. This allows exploration of the characteristics of the unsteady 
formulation without the complications associated with another added dimension. The 
unsteady results can be validated by comparisons with solutions obtained from the two- 

dimensional steady interaction code. 

The intention of this work is to produce the unsteady interaction code and compare its 

solution with that of the steady interaction code and with data. 

6 
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2.0. DERIVATION OF THE UNSTEADY INTEGRAL BOUNDARY-LAYER 

EQUATIONS FOR TWO-DIMENSIONAL C O M P R E S S I B L E  F L O W  

The inner region solution is constructed from the integral form of the boundary-layer 

equations. These equations are obtained via the Reynolds-averaged Navier-Stokes equations 
and the Prandtl limit. Thus, when expressed in conservation form, the Navier-Stokes 
equations are (Ref. 7): 

8G 8 
+ J ° a x ~  Fij = O, (l) 8 ~  

where 

o_- ,,, 

and 

( 0 ) 
Fij = -~ij + Gvj - fij(#) + Gvj (3) 

-TkjV k + qj 

are the dependent variable matrices and 

t OV i OVj ) 8V k 
= ~ + ~ "P($ij + k ~  ($ij (4) 

~j /t 8Xj o~ i 8X k 

is the viscous stress tensor expressed in terms of the Lam~ constants # and k (usually referred 

to as the first and second coefficients of viscosity, respectively) and 6ij is the Kronecker delta. 
These constants are related to the bulk coefficient of viscosity, )7, by the equality, )1 = X + 

2/u'3, and this quantity is placed equal to zero by adopting Stokes' hypothesis. The equation 
of state is taken to be 

p + 1 
e = ,y-1 Y • Vivi (5) 

Finally, qi -- -kOT/Oxi is the heat flux component in the xi direction and k is the thermal 
conductivity. The form of Eq. (1) remains intact under the Euler limit operator (E such that 
/z -- 0,X -- 0, k - 0),  but 

7 

i 
' I 
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(°/ E(fij) --* PSij 
pvj 

(6) 

is the limit form of fij, and all dissipation-causing terms vanish. 

Before the Euler limit operator is applied to Eq. (1) it is necessary to introduce the 

Reynolds decomposition in the form: 

¢ = ,t, + ¢ ' ,  (7) 

where 

4, = E ( $ ) a n d E ( ~ ' )  --- 0, (8) 

with I~ anaveraging operator. The Reynolds-averaged equations then follow when the 
operator E is applied to the decomposed equations. All nonlinear terms give rise to 
correlations of  variable fluctuations. For example, a velocity product - -  which arises in the 

inertia term of the momentum equation - -  will produce < ~vivj > correlations whose 

dimensional form allows them to be referred to as Reynolds stresses. 

The Euler equations are recovered (as the appropriate outer flow equations) when the 
Euler limit operator E is applied to the Reynolds-averaged equations if it can be assumed 
that all correlation terms vanish in the far field. This need not be true for all flows of 

interest: examples to the contrary include wind tunnel flows and atmospheric flows. It is well 
known that free-stream turbulence can have a significant effect on the development of a 
turbulent boundary layer and this fact may well impair the comparison between wind tunnel 
data and theoretical calculations based upon the classical Euler equations for the external 

flow. Nevertheless, the present study neglects the correlation terms in the Euler limit 
equations. 

The inner region equations are obtained from the Reynolds-averaged equations by use of  

the Prandtl limit operator P, where P is a product operator such that: 

. The coordinate (x2, say) normal to the wail is scaled as ~ = x 2 / ~  for laminar flows. 
Such scaling is usually adopted for turbulent flow without justification. 

2. The operator E is applied. 

The result of this combined operation is the pair of equations (now expressed in planar 
coordinates, where u and v are the velocity components in the x- and y-directions, 

respectively): 
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ao + a (eu)+a a--t- a--~- ay (ov) = o (9) 

8u Ou 8u dp 8T 
Q at + Q u ~  + ~v - + ~ ,  (10) 

#x Oy dx 8y 

in which 

t~u 
- < ~ u ' v '  > (II)  T = #  0y 

represents the total shear stress component which has the major impact on a two- 
dimensional boundary layer. 

These partial differential equations may be transformed into ordinary differential 
equations in space by multiplying Eq. (9) by um+l/(m+ l), and Eq. (10) by u m, and 
summing the two equations to form the mth-moment equation: 

1 {O /Q 1' m+l~ 8 [ - m + 2  l_ Qu um+l /1 O / Q ) 
m + l  um*- uo )+T LOoRe  ouo am*' l yam+' ; 

m+l a 1 m aue m at~ - Ue - ~  (~v) + ~Ue ~ + ~UUe ~x 
I 

SUe aT 
+ U m Q e U e - - ~  + u m ~  

ay 
(12) 

= UmQe t~Ue 
at 

where m = 0 generates the momentum equation, and m = l creates the mean flow kinetic 
energy equation. The momentum equation valid at the edge of the boundary layer has been 
incorporated to replace the pressure gradient, dp/dx, but does not imply the assumption of 
isentropic flow. 

The integral momentum equation is obtained by integrating Eq. (12) from 0 __< y<  ~ ,  
setting m = 0 and introducing the integral parameters 

o ~OeUe Re 
(14) 
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O~ = i ( l  - ~e )dY '  ( i s )  

To (16)  
Cf -- ~ 0 e U 2  , 

in which 8" is the displacement thickness whose significance will be discussed in Section 5.0; 
0 is the momentum thickness or the distance that the momentum defect extends from the 
body; 0~is the density thickness; and cf is the local skin friction coefficient with To = 
~0u/0yly=0 since the Reynolds stress vanishes on the wall. Then by applying the boundary 
conditions 

u = O;v = Oa ty  = 0 

u - -  u=; T - -  O a s  y - - o =  

the integral momentum equation becomes 

1 (~=ue~*) - ue (QeOQ) + 

® 

l 0 (o=u O) 
OeUe 2 

® 

8" /]Ue Cf 
+ . . . . .  0 (17) 

ue 8x  2 

© ® 
The source term ~ derives from the time-dependent terms in Eqs. (9) and (10) and has 

two components involving 8" and 0 e which come from both the continuity and momentum 
equations. Term B describes the rate of change of momentum thickness 0as the boundary 
layer develops under the imposed pressure gradient. The pressure gradient is contained in 
term ( ~  (here expressed as an external velocity gradient where, as pointed out above, the 
flow has not been assumed to be isentropic). Term ( ~  thus represents the external flow 
boundary condition. Finally, te rm(~)  represents the only contribution of the shear stress T 
to the momentum integral equation and contains only the boundary value To = ~0u/0y ly=o. 
The skin friction coefficient cf is included empirically and is usually expressed in the form cf 
= el(Re0, H,M), as discussed in Section 3.0. 

The mean flow kinetic energy equation is obtained by setting m = 1 in Eq. (12), 
integrating from 0 __ y < oo and introducing the integral parameters 

10 
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i/ u) 6u* = I - ~ee dy, (18) 

0 " =  Qu I - m  dy, 
~eUe u~ 

(19) 

DE = ~ T 0 __u dy, (20) 
o To Ue 

in which 6* is the velocity thickness; 0* is the energy dissipation thickness; and DE is the 
shear work integral term. Then by applying the previous boundary conditions, the mean 
flow kinetic energy equation (or first moment equation) becomes 

1 0 Qou~ (0+6 . -0~ )  + ~ 0uo + 1 0 (Qeu~0*) 
2~©u~ 6t Ue z 0t 2Qeue ~ Ox 

® ® 

6"--6u OUe CfDE 
4 = o (21) 

ue Ox 2 

© ® 
Te (~)  is again a source term and term ( ~  involves the external pressure gradient. 

Term ( ~ - i s  the rate of change of mean flow kinetic energy thickness 0". Term @ ,  
containing the shear work integral DE, is the most interesting term since this is the major 
contribution &om the Reynolds shear stress < ~ u ' v '  > .  From Eq. (20) it is seen that the 
shear work integral involves an integral of the quantity ~'#u/#y across the boundary layer. 

If Eqs. (17) and (21) are formed for the three-dimensional problem, several differences 
would be evident. Two momentum equations, each with three velocity terms, would be 
required in addition to the three-dimensional unsteady continuity equation. Also, a second 
shear stress term would be required for the spanwise direction on a wing. Two sets of  
integral parameters would also be required; one in each direction of the airfoil - -  chordwise 
and spanwise. 

Finally, it can be noted that Eqs. (17) and (21) contain seven unknowns (6",0,0",0~,6",cf, 
DE} and can only be solved when five additional equations are available. Experimental 
correlations are used in this capacity in the present work, and will be discussed in Section 
3.0. 

11 
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3.0 STEADY AND UNSTEADY BOUNDARY-LAYER METHODS 

3.1 STEADY BOUNDARY-LAYER METHODS 

Many of the basic ideas used in the steady formulations are maintained in the unsteady 
case. A steady compressible turbulent integral boundary-layer code was developed by 
Whitfield, Ref. 5, to produce quick and accurate solutions to two-dimensional boundary 
layers on adiabatic walls. The input required is a distribution of pressure on the body which 
is usually obtained from experimental measurements in the present applications. (This 
method is referred to as the direct method. Conversely, a method using a 6" distribution as 
input is termed an inverse method.) Whitfield's method solves the integral x-momentum and 
mean flow kinetic energy equations formulated from the differential continuity and 
x-momentum equations. The integral equations solved are (from Ref. 5). 

8* due cf 1 d (QeU~) + - (22) 
QeU 2 dx Ue dx 2 

8 " - 6  u due ct' DE (23) 1 d (QeUe30,) + = __ 
20cue 3 dx Ue dx 2 

These equations differ from the unsteady equations developed in Section 2.0 only by the 
time derivative terms [the A terms from Eqs. (17) and (21)]. The number of unknowns in 
Eqs. (22) and (23) is reduced to six since 0o only occurs in the unsteady terms. The 
correlations obtained later will be used as the remaining equations required to solve the 
system. 

Whitfield's approach to solution of Eqs. (22) and (23) was to establish various shape 
factors: 

H6* = 6"/0, . (24) 

H0* = 0"/0, (25) 

Ha~ = au/O, (26) 

w 

and correlate them with H and the boundary-layer edge Mach number by numerically 
integrating (Simpson's rule) the velocity profile of Whitfield and the expression for Q/Oe 
(Ref. 5). The correlations relate compres§ible and incompressible flows by means of the 

Mach number dependence included in the correlations. In addition, the skin friction (cf) was 

correlated with H and Re0 by using the work of Winter and Gaudet (Ref. 8), who established 

12 
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the relationship between low-speed skin friction (cf) and the local skin friction (cf) in a 

compressible flow. Their relation is 

(27) 

in which Me is the Mach number at the boundary-layer edge. Initially, this relationship was 
established for adiabatic walls, zero pressure gradient, and air as the working fluid, but it 
was hypothesized (Ref. 5) that .the relationship is also true if the appropriate expression for 
c~ is used in instances in which the pressure gradient does not vanish. A relationship for cf 
was extracted from White [Ref. 9, Eq. (6.180b)] where ~ i s  a function of H a n d  P, e0; that is, 

cf = 0.3 et-1.33H) (log Re0) (- 1.74-0.31H) (28) 

The correlation, Eq. (28), assumes a smooth wall~ Effects of roughness could be included by 
introducing new parameters into the correlation. 

The shear work integral term, DE, is 

DE = I 7 0 u dy, (29) 
o To ~Y 

which is basically a turbulent energy production term which describes the conversion of 
mean flow energy into turbulent energy. Equation (29) was obtained by direct integration 
employing the Cebeci-Smith two-layer eddy viscosity turbulence model (Ref. 10) for T and 
Whitfield's turbulent velocity profile for a u / ~ .  The Cebeci-Smith turbulence model was 
chosen primarily because of its simplicity and computational speed. However, the shear__ 
work integral termwas later numerically correlated with H, edge Mach number, Me, and Re0 
as reported in Ref. 11. As a result, all terms in the steady integral equations [Eqs. (22) and 
(23)] are either input, or may be determined by the correlations. The integral equations are 
then solved by the predictor-corrector method of Nash (Ref. 12). Results from Whitfield's 
code (Ref. 5) show acceptable agreement with a multitude of boundary-layer data. The 
program is known by the acronym SWIM (Shear Work Integral Method). 

The SWIM code provides a reasonable prediction of the flow separation, if separation is 
designated as the condition at which the numerical algorithm breaks down. The problem 
arises primarily because the boundary-layer equations are parabolic in nature and exhibit a 
singularity at separation (Ref. 13). Physically, this means the influence of the flow is felt 
only in the downstream direction. Therefore, after separation occurs, the flow information 
cannot influence the flow upstream, producing a singularity at the separation point. 

13 
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Because of the importance of separated flows, work was needed to extend Whitfield's 
method to the separated flow regime. First, improvements to Whitfield's velocity profile 
correlation to include reverse flows were required. Swafford (Ref. 14) made improvements 
and succeeded in extending Whitfield's shape factor correlations and the skin friction 
correlation of White to the separated flow region. 

Second, the singularity at the separation point needed to be eliminated. Catherall and 
Mangler report (Ref. 15) that the singularity may be removed by the specification of the 
displacement thickness (~*) or the wall shear distribution rather than a pressure distribution 
as in the SWIM code. The displacement thickness may be prescribed when the boundary 
layer is computed by the inverse method. Swafford's correlations reveal that when H 
becomes large enough ( -3 .2 ) ,  a separated flow profile and a negative skin friction will 
emerge. A plot of the skin friction correlation is shown in Fig. 2. Because of the limited 

amount of experimental data available for separated flows, the correlations used in the 
separated regions cannot yet be considered universally applicable, especially for separated 
flows in which H _> 4. However, the correlations are generally considered good for H _ 4. 
The Cebeci-Smith turbulence model is retained for the separated region with the assumption 
that the turbulence model is valid in reverse flow. This is questionable since the turbulent 
energy production term is very small in a separated flow region. The outer portion of ihe 
boundary layer is still "wake-like," however. 

The SWIM code has been altered (Ref. 4) to make use of the inverse method and was 
coupled with an Euler equation code to produce a steady, inverse viscous-inviscid 
interaction code. The interaction code works well for both attached and separated flow and 

many two-dimensional problems may now be solved. The interaction process will be 
discussed in more detail in Section 5.0. 

3.2 UNSTEADY BOUNDARY-LAYER METHODS 

An unsteady boundary-layer method based upon the principles used in the SWIM code 
and the separated flow correlations was devised by Whitfield. It solves the two-dimensional 
integral compressible, unsteady boundary-layer equations derived in Section 2.0. Time is an 
incremental stepping parameter in the formulation. Thus, the entire boundary layer is 
determined after each time step. It must be emphasized that the time-advancing routine is 

only a means of arriving at a final steady-state solution. Any solution in the interim is not 
representative of the real time flow. Hence, the temporal gradients are not necessarily 
correct. 

The unsteady integral boundary-layer equations were formulated to be solved by the 

direct method (see Appendix A), in which surface pressures are used as input to the code. 

14 



AEDC-TR-84-7 

¢0 
O 

X 
V 

2 . 0  

1 . 5  

1 . 0  

0 . 5  

0 

- 0 . 5  

- 1 . 0  t I I I I I J 
0 1 2 3 4 5 6 7 

H 

Figure 2. Correlation of  incompressible  skin friction,  cf'-'~ for 
attached and separated f lows .  

The parameters computed from the solution process are the momentum thickness_ (0) and the 
incompressible shape factor (I-l). A flat plate approximation of  the 0 and H distributions is 

used to begin the solution process. An additional shape factor (H0o) correlation was required 
to solve the unsteady problem and was obtained in the same manner as the previous shape 

factor correlations. After each time step of  the unsteady method, a new distribution of 0 and 
is determined on the entire body. The new distributions are used as an approximation for 

the next time step. The iteration process is continued until steady state is obtained. All other 
integral parameters may be computed by means of  the shape factor correlations once 

distributions of Mach number a,ld H are known. The Mach number is known from the 

input. The unsteady direct solution process is shown in Table I. 

Cousteix, et al. (Ref. 16) have suggested that singularities are possible with an unsteady 

direct method. Whitfield developed an inverse unsteady method to avoid such singularities, 

as was done in the steady version. The unsteady boundary-layer equations were formulated 
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Table 1. Solution Procedure for the Unsteady, Direct 
Boundary-Layer Method 

Step Procedure 

1. Input initial values of  H(x) and 0(x) distributions (flat plate 

approximations) and Me(x). 

2. Evaluate all other parameters using H, Me, and Re0 at every spatial 

station. 

3. Solve equations for O0/Ot and 8H/0t  at every spatial station. 

4. Compute  0, H at next time step (backward difference in time) at all 

spatial stations. 

5. Use 0, H distributions for next time step. 

6. Go to step 2 and do until convergence (where O0/#t and OH/St -- 0). 

for the inverse method (see Appendix B) in which a 6* distribution is used as input. The 

parameters to be determined by the time-dependent inverse solution process are 0 and the 

edge velocity (ue). As was done in the direct unsteady method,  the two boundary-layer 

parameters (0 and ue) which are obtained in the solution are updated in time until steady 

state is reached. The unsteady inverse process is shown in Table 2. 

Whenever a 6" distribution is not available, an inverse boundary-layer code may be used 

in a pseudodirect mode. Here, a pressure distribution is used as input and, by the iterative 

process of  Carter discussed in Section 5.0, an initial 6* distribution (using flat plate data, for 
example) may be updated until convergence. With each 6* distribution during the solution 

process, a pressure distribution is obtained from the boundary-layer code and compared to 

.the input value of  pressure. The ratio of  computed pressures to input pressures is used in 

Carter's method to update the next 6* distribution. In this manner a pressure distribution is 
used as input, yet the inverse method is used to obtain a solution. This method is valid only 

for attached flows. It is not known why this method will not compute separated flows and 

an inverse method will. The pseudodirect method was used in the present work when 

comparisofis between direct and inverse codes were made for attached flows. 

Both the direct and inverse methods employ a fourth-order, variable step Runge-Kutta 

scheme in the solution processes. This method had the best convergence record with an 
upstream spatial differencing scheme. Central differencing was tried earlier and was found 

to converge with only about half the accuracy achieved with the upstream differencing. 
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Table 2. Solution Procedure for the Unsteady, Inverse 
Boundary-Layer Method 

Step Procedure 

1. Input initial values of H(x) and 6*(x) distributions (flat plate 
approximations) and ue(x) distribution from inviscid solution. 

2. Evaluate all other parameters using H, Me, and Re0 at every spatial 

station. 

3. Solve equations for 00/~t and aUe/St at every spatial station. 

4. Compute Me and H from values of Ue, 0, and 6* using backward 
differencing. 

5. Use Me and H distributions as approximations for next time step. 

6. Go to step 2 and do until convergence (where a0//~t and 0ue/t3t - 0). 

4.0 DIRECT AND INVERSE UNSTEADY BOUNDARY-LAYER RESULTS 

To choose the best unsteady method for coupling with the Euler code to obtain an 
Unsteady viscous-inviscid boundary-layer code, both the direct and inverse unsteady 
methods were used to compute attached and separated boundary-layer flows. For attached 
flows the inverse code was run in the pseudodirect mode to use the same experimental 
pi'essure distributions as the direct method. This allows a more direct comparison between 
the two methods. For separated flows, the direct method uses the experimental pressure 

distribution while the inverse method uses the measured displacement thickness distribution. 

The two attached flow cases considered (designated Case 6 and Case 9) are taken from 
Ref. 17 which includes boundary-layer data for an RAE 2822 airfoil at several Mach 

numbers and angles of attack. Case 6 and Case 9 upper surface measured pressure 
distributions were used as input for both codes and solutions were obtained for the 
boundary layers. The airfoil is equally divided into 150 increments in the present study and 
the pressure distribution was interpolated for each point to begin the solution. One hundred 
fifty increments have been found to be sufficient for describing a shock located on the air- 
foil. Both flow cases considered include a shock about mid-chord. Case 9 has the stronger 
shock. The codes provide a continuous solution through the shock region and no turbulence 
enhancement is made across the shock. 

The various boundary-layer parameter distributions of Case 6 for both the direct and 

inverse solutions are given in Fig. 3. The two solutions are indistinguishable and both are 
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plotted as one line. The same pattern for Case 9 is shown by the solutions presented in Fig. 
4. In both cases the shock location is clearly evident as an abrupt change in the boundary- 

layer parameters. When compared with available boundary-layer data (Figs. 3 and 4), the 

two techniques compare well upstream of the shock but fall below the data downstream of 
the shock. From experience with the steady flow codes, this result is not unusual when 
strong shocks are present. A possible reason for the discrepancy is that the shock may 
amplify the turbulence of the flow which is not considered in either the shear work integral 

or the skin friction equation of the present method.  
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Figure 3. Concluded. 

Two cases of  low-speed separated flow data, compiled by Simpson, et al. (Refs. 18 and 
19), were used to produce solutions by both the direct and inverse methods. The 
experimental displacement thickness distribution was used as input to the inverse method. 
Comparisons of  both solutions with data are presented in Figs. 5 and 6. Flow separation (cf 
= 0) was predicted by the inverse method for both cases of  Simpson which was in agreement 
with the measured location. The direct method did not predict flow separation. Solutions by 
the inverse method do not agree well with momentum thickness data downstream of  the 
separation point. This is probably because the shape factor correlations used are applied 
beyond their useful limits (that is, H > 4 occurs in the present case). 
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Two important points are made from the unsteady boundary-layer results. First, both 
the direct and inverse method produce comparable solutions for attached flows. Second, the 
inverse method will compute a separated flow solution, whereas the direct method will not. 
The results justify coupling the inverse boundary-layer method with an Euler equation code 
to create an unsteady interaction code capable of solving flows with separation. This task is 
the focus of the present work. 

5.0 TRANSONIC VISCOUS-INVISCID INTERACTION METHOD 

5.1 INTERACTION PROCESS 

The successful application of the inverse unsteady boundary-layer code in conjunction 
with an Euler code would greatly enhance the progress being made to compute three- 
dimensional viscous-inviscid interacting flows. The applications would verify that the 
unsteady interaction methodology, which is the technique to be used in three-dimensional 
computations, is feasible. 

The interaction process used in the steady interaction code is the same one employed by 
the unsteady formulation. The overall interaction scheme is based upon computing the Euler 
equations for several time iterations, then employing the viscous method, and continuing 
this viscous-inviscid loop until steady state is obtained. The unsteady Euler equations are 

hyperbolic; thus, every point in the flow field influences other points via the domain of 
influence in the time plane as dictated by the characteristics. This property aids in 
distributing the effects of the boundary layer to the rest of the flow field. 

Whitfield's steady interaction method applies the surface source model of Lighthill (Ref. 

20) as a coupling device between the viscous and inviscid computational regions. This choice 
permits the inviscid computational mesh to remain fixed. The surface source model imposes 
a mass flux on the airfoil of  the form 

d 
( ~ v ) . -  dx (~eUe6*), (30) 

where (0V)n is the local mass flux normal to the surface and numerically simulates the 
displacement effect caused by the boundary layer. 

Physically, the surface source term may be compared to a blowing effect which mimics 
the boundary-layer displacement. There continues to be a conservation of mass within the 

computational domain by solution of the continuity equation. Mass entering from the body 
is a boundary influx and a momentum source, as at the entrance plane, and is matched by an 
additional outflux of mass at the flow exit plane. The added mass from the airfoil displaces 
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the effective body for the inviscid flow calculations. However, the net mass added in the 
boundary layer and wake is not zero and a global mass balance is not satisfied. Global 

momentum considerations then show that a thrust must be exerted on the airfoil. Since some 
of the added mass in the boundary layer is removed by sinks in the wake, the total mass 
addition is small. The scheme adopted here is similar to the method in which the 
displacement thickness is added to the airfoil for each new inviscid calculation. However, 
the present method has the advantage that the computational mesh never has to be altered. 

After the flux term, (Qv)., is evaluated in each pass through the boundary-layer routine, 
it is transferred to the Euler code as an updated boundary condition on the body surface. 
During solution of the Euler equations, the flux term is held constant until the next 
boundary-layer calculation. Since the computations were made for airfoils, the upper and 

lower surfaces were computed separately within the boundary-layer routine. 

In each viscous-inviscid cycle the displacement thickness distribution (initially assumed 
as a flat plate approximation) is updated by information from the previous viscous-inviscid 

cycle. This is done after the Euler equations are computed for several time cycles and before 
the boundary layer is computed again. The method used to specify the updated 8* 

distribution is Carter's method (Ref. 21), which may be written as 

6"(n+l) = 6 *(n) -I- 8 *(n) W(Ue,v/Ue, i -  1), (31) 

where 8*(n + 1) is the updated displacement thickness; 8*(n) is the displacement thickness 

from the previous viscous-inviscid cycle; U©,v is the local edge velocity obtained from the 
latest boundary-layer solution; ue,i is the velocity obtained from the previous Euler equation 

solution; and t~ is the relaxation parameter. Details of the boundary conditions in the Euler 
code are discussed in Section 5.2. The entire solution cycle of the Euler code and the 

boundary-layer routine is continued until the 8" distribution is converged. The term Ue,v/ue,i 
which approaches unity during convergence is monitored as the convergent parameter. An 

interaction code of this type may produce better solutions than an integral boundary-layer 
code alone, especially if shocks are present in the flow. While the flow, including the shock, 

is being developed by the Euler code, the boundary layer is continuously interacting and 
periodically being updated, which allows the boundary layer to be coupled with the outer 

flow. 

The unsteady integral boundary-layer code presented in Section 3.0 was essentially 
exchanged with the steady boundary-layer portion of the steady interaction code, creating 

an unsteady interaction code. After the exchange was accomplished some alterations were 

needed to successfully run the unsteady interaction code. In the steady interaction code, the 

incompressible shape factor (H) was computed directly by the steady boundary-layer 
solution as was the edge Mach number. Since all correlations are based upon these two 
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parameters, any other parameter required in the solution process was easily obtained. After 
each boundary layer was completed, the H distribution was saved and used in the next 

viscous-inviscid cycle as a new approximation. The Mach number distribution was obtained 

from the Euler solution before each boundary-layer calculation. 

i 

However, the parameters computed directly by the unsteady boundary-layer solution are 
0 and edge velocity (Ue). After each viscous cycle, the 0 distribution is saved for the next 
viscous-inviscid interaction. The H distribution is determined from the computed 0 and the 
updated 8" distribution (obtained by Carter's method). After the H distribution has been 
determined, the other parameters required for the viscous solution process may be computed 

from the shape factor correlations and edge Mach number as before. 

Another problem associated with the unsteady interaction code is the time-stepping 
iterations of the viscous part of the code. The steady viscous solution is marched spatially 
along the body, while in the unsteady viscous method, a number of time iterations must be 
completed within each boundary-layer calculation. The most economical process for the 
present cases was to begin with a few iterations (usually 50) within the boundary-layer 
solution and arbitrarily increase the number of viscous iterations with each viscous-inviscid 
loop. The last time the boundary layer was computed, the number of viscous iterations was 
arbitrarily set at 500 time steps. This made a total of 4,000 to 5,000 time steps within the 
viscous part of the code. Also, a total of approximately 1,000 time steps was required in the 
inviscid part of the code. If no boundary layer were computed, the Euler code still requires 
approximately 1,000 iterations for convergence of the flow cases presented here. 

5.2 EULER EQUATION CODE 

The Euler code used in the present work in conjunction with the inverse unsteady 
boundary-layer code was developed by Jameson and is fully described in Ref. 6. The code is 

written in full conservation form and allows the representation of shocks and other 
discontinuities in flows over airfoils. Far field boundary conditions allow either subsonic or 
supersonic flows. All solid surface boundary pressures are extrapolated from the flow field 
values. When effects of the boundary layer are added to the Euler code, the flux term 
associated with the growth in the displacement thickness is included at the solid surface. The 
method of solving the time-dependent Euler equations is a four-equation, fourth-order 

Runge-Kutta scheme with local time stepping and central spatial differencing. 

A C-mesh is used in the Euler code (Fig. 7) because it is considered best for airfoil 

solutions in which the wake region is computed because it allows a dense spacing in the wake 
region. The spacing of the mesh for the two-dimensional cases considered in the present 
work was 127 by 31 with 45 points on each of the airfoil upper and lower surfaces. The mesh 
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Figure 7. Representative sample of a C-type mesh about an airfoil. 

may also be aligned, if desired, with possible discontinuities such as shocks or slipstreams in 

the flow field. No changes in the inviscid mesh are required for applying the viscous effects 
of the boundary-layer code, and no interpolations are needed. The mesh remains fixed in 

time. These features will be significant factors when the viscous-inviscid method is extended 

to three- dimensional problems. 

Viscous solutions of the wake region in viscous-inviscid iterations are computed by 
establishing a small value 0 0  -6) for the skin friction and applying the boundary-layer code 
for the wake as an extension to the airfoil surface. The wake boundary condition is 
linearized; i.e., is applied along the centerline of the mesh downstream of the airfoil. 
Although the boundary condition is not applied at the real wake location, the slipstream 
camber, which results from the solution of the code, is computed at the correct location. A 

fair representation of the wake may be made in this manner. 

Boundary conditions required in the Euler code include specific inflow and outflow 

conditions for either subsonic or supersonic flows at the far field boundary. Inflow 
conditions for supersonic flow are set to free-stream values and outflow parameters are 
extrapolated from the interior values. For subsonic inflow conditions, the density is 

determined by extrapolation while other properties of the flow are evaluated from the 
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density and stagnation conditions. Pressure is set to the free-stream value as a subsonic 
outflow condition while velocities are obtained by extrapolation. All other flow parameters 

may be determined when these far field properties are set. 

5.3 RESULTS OF THE STEADY AND UNSTEADY VISCOUS-INVISCID INTERACTION 

CODES 

Results of the unsteady interaction code developed in the present work and results of the 
steady interaction code of Ref. 4 are discussed and compared with data. Three sets of data 
are considered. Case 6 and Case 9 (Ref. 17) of Section 4.0 were computed with both 

interaction codes. Another data case from the same reference (denoted Case 3) is also 
considered. The results are presented in two parts. The first includes comparisons of 
pressure coefficient data with computations (Figs. 8, 9, and 10); the second contains 
comparisons of the boundary-layer data with computations (Figs. 11, 12, and 13). Since no 
lower surface boundary-layer data were reported, only the Case 9 lower surface 

computations are presented (Fig. 14) to show that the trends are reasonable. 

For all three cases the point of  origin of the boundary layer is at 18-percent chord. For 
these highly loaded aft-end airfoils it is essential that the effective camber over the last 
20 percent or so of the airfoil be estimated correctly. The fixing of the boundary layer at 
18-percent chord does not allow the boundary layer to adjust to stagnation point movement. 
In addition, the lower surface boundary layer may not be predicted too well in the strong 

adverse pressure gradient downstream of 50-percent chord. 

The predicted pressure distribution for Case 3 is compared to data for both the steady 
and unsteady interaction code results in Fig. 8. Both computations produce essentially the 
same distributions and are presented as a single curve. The comparison with data is 
considered good except on the upper surface ahead of the 10-percent chord position. Such a 
discrepancy occurs with many airfoil calculations and is related to the lack of mesh 
resolution near the leading edge. The lower surface pressures are slightly underpredicted. If 

i 

the flow is supercritical, the introduction of the boundary layer at 18-percent chord causes a 
jump in the pressure distribution at that point which can result in small changes in lift 
attributable to the differential boundary-layer growth resembling a camber change to the 

airfoil. There is also a thickness discontinuity at the location at wh!eh the boundary layer is 

introduced. 
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Case 6 and 9 pressure coefficient comparisons are shown in Figs. 9 and 10. The 
difference between the steady and unsteady calculations is apparent. Both methods provide 
reasonably good results when compared to data, and only a slight shift in the shock locations 
between the two methods is evident. Again, the largest discrepancy occurs in the pressure 
distributions of the lower surface and the initial 10-percent of the upper surface. The main 
point to be observed is that the steady and unsteady interaction codes agree well. In all three 
cases, the two codes give equally good surface pressure predictions. 

Comparisons of the computed and measured upper surface boundary-layer quantities 
for Cases 3, 6, and 9 are presented in Figs. 11, 12, and 13. The parameters of interest are the 
displacement thickness (6'), momentum thickness (0), and local skin friction (cf). The 
pressure distribution calculations are shown as an aid in locating the shock position. Case 3 
and 6 computations (Figs. 11 and 12) show good agreement between both methods for all 
three parameters. In the last 20-percent chord in both cases, computations and data have a 
larger discrepancy than at the upstream positions. Computations of Case 9 (Fig. 13) provide 
the best agreement with the data. Near the trailing edge, good predictions are made by both 
the steady and unsteady interactio~ codes. A strong shock is predicted by theory, but not 
enough data points are available in the boundary layer to determine the strength. However, 
the predicted shock location and strength are in good agreement, Fig. 10. As shown by the 
skin friction curves, both computations predict a ~ear separation region just aft of the shock 
and near the trailing edge. The two computational methods agree well with each other. 

Several assumptions made in either method may have resulted in the differences denoted 
between data and the analytical solutions. Assuming that the data are not influenced by 
extraneous factors, the integral method, which eliminates turbulence structure in the 
momentum equation and the simplistic turbulence model used in t:lc shear work integral 
term, may be contributing factors to the differences. However, the overall results are good. 
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Figure 11. Comparison of measured upper surface boundary-layer parameters with 

calculations of the unsteady and steady interaction codes (Case 3). 
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Figure 12. Comparison of measured upper surface boundary layer parameters with 

calculations of the unsteady and steady interaction codes (Case 6). 
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6.0 CONCLUSIONS AND RECOMMENDATIONS 

The objective of this work was to produce and validate an unsteady viscous-inviscid 
interaction routine based upon a two-dimensional, unsteady integral compressible 
boundary-layer method devised by Whitfield and the Euler equation code developed by 
Jameson. The unsteady interaction code was compared with experimental data and with a 
steady viscous-inviscid interaction code which utilizes a steady integral boundary-layer 

method. The results indicate that the unsteady interaction method gives satisfactory 
answers. 

The major advantage of the present work is that the method is computationally faster 
than a Navier-Stokes solution while providing good engineering solutions for transonic 
airfoil flows. Another advantage of the method is that the inviscid and viscous parts of the 
code both use the same computational mesh spacing in the streamwise direction. 

The major disadvantage of the method is the use of a simplistic turbulence model within 
the calculations. Although this is one reason for the speed of the method, the turbulence 
modeling at a shock location, for example, could be improved. 

To improve upon the present method, the time-dependent terms, which are set to zero, 
should be better approximated. This may lead to an accelerated convergence and more 
accurate solutions. Further testing of the interaction code should also be done to include 
wider ranges of Mach number and incidence. Also, cases in which separation is known to 

occur should be computed to provide information about the method's ability to predict 
separation. 

Finally, the method should be extended to three dimensions to determine the difficulties 
that may arise. Once accomplished, a three-dimensional interaction code can be developed 
to compute viscous-inviscid solutions of realistic configurations in transonic flows. 
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APPENDIX A 

DERIVATION OF EQUATIONS SOLVED BY UNSTEADY DIRECT METHOD 

All flow parameters are evaluated at the boundary-layer edge. The subscript " e "  has 
been eliminated and is understood. 

Expanding Eq. (17) and multiplying by u will yield 

86* ~0 o ---- UCf 1 0 (•u20) _ 6* Ou 6* 0 (0u) + 0o 86 
8t 0t 2 Qu 0x 0x Qu at Q at 

= bl(Cf,0,6*,0o) (A-l) 

Expanding Eq. (21) and multiplying by 2u will yield 

0__0_0 + 86* 00~_ = 2u cfDF 1 0 (Ou30 *) - 2(6* - 6~) 0__u_u 
0t 0t 0t 2 Qu 2 0x 0x 

2(0Q- ~) 0u 
u 

1180 6,8 8 ~ 0~I 2 T ({~u2) -.I- - - ~  (()u 2) - 0 0 ~- (ou 2 

= b2(cf,DE,0*,~*,6u,0e,0 ) (A-2) 

80 
= b2 - bl (A-3) 

~t 

Using the definitions 6* -- Hp0* and 0e = H0~ 0, expanding Eq. (A-l) and collecting terms 
gives 

/H e/ 00 /--~-- 0H8"t -- b I (A-4) p - Ho ~ -  0 H0Q 0t 

But, H and H0~ are functions of H and Me from Whitfield's correlations. Using the chain 
rule and assuming 8Me/0t = 0 gives the final form for Eq. (A-4): 

Hp - Ho ~ 0 H°° OH / 0 - - t =  (A-5) 
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For the final equations, solve for 80/8t and aH/8t between Eqs. (A-3) and (A-5) to give 

8O 
¢3"-'~ = b2 - b! (A-6) 

_ 8 0  
~H bl - (Hp - HOQ] ~- 

/)t - 0/-- ~ -  Ho. ~H~'t~H (A-7) 
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APPENDIX B 
DERIVATION OF EQUATIONS SOLVED BY UNSTEADY INVERSE METHOD 

In a similar fashion as in Appendix A, expanding Eq. (17) and multiplying by u/0 results 
in 

H~, au u 80 (2 + Hp) au c f  u 1 8 
u at = 0 ~ - ~  + 2 0 +-0- 8-t-(0Q - a*) 

u 8Q Hp - Ho o aQ 
~o 8x ~o 8t 

c2 (B-I) 

Expanding Eq. (21) and multiplying by 2u/0 results in 

1 80 + 1 1 2 / l  + H e 5u / 1  8u u 80 
0 at u 0 8t 0 Hp ax 

I3Hp + 2 / HP 6u/10 ' --~--+Su CfDEU0 u -------~SH°* (B-2) 

1 8 uHo, aQ (1 + H~, - Hoe ) 8Q 
0 at ( a * -  0~) ~ =  cl Q 8x Q 8t 

This pair of equations may now be solved for 80/8t and 8u/at by Cramer's rule: 

Defining 

1 All = 
0 '  

I( °:II 1 2 1 + H p  A12 = u 0 

A21 

A22 

= 0 ,  

Ha. 
9 U 
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then 

80 _ A22 Cl - AI2 c2 _ _ A22 cl - AI2 c2 (B-3) 

8t All  A22 - Ai2 A21 All A22 

8u _ All  c2 - A21 cl _ c2 ( B - 4 )  

~t Alt  A22 - A12 A21 A22 

These equations can be solved as long as the denominator  (H~,/uO) does not approach 

zero (i.e., where H p  -- O, or uO -- oo). This condition will not apply since H p  :~ 0 and uO is 

finite. 

Both bl and b2 in the direct method,  and cl and c2 in the inverse method include 

derivatives in time of  flow parameters other than the ones sought in the solution process. It 

should be noted that the t ime-dependent terms are set to zero in the formulation to solve the 

equations. The end result is to obtain a steady-state solution in which these terms have no 

influence. However ,  during the solution process, an assumption must be made for these 
terms. 
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AI I,AI2, 
A21,A22 

bl,b2 

Cp 

CI,C2 

Cf 

Fij 

fij 

G 

H 

Hs, 

H~* u 

HO* 

H0Q 

M 

P 

qi 

NOMENCLATURE 

Denotes elements of the solution matrix (Appendix B) 

Functions defined in Appendix A 

Pressure coefficient, (p-p®)/(l/2 q2=) 

Airfoil chord 

Functions defined in Appendix B 

Local skin friction coefficient, 2To/(0eU~ 

Shear work integral term, defined by Eq. (20) 

Energy, defined by Eq. (5) 

Parameter used in Navier-Stokes equations, defined by Eq. (3) 

Parameter used in Navier-Stokes equations, defined by Eq. (3) 

Parameter used in Navier-Stokes equations, defined by Eq. (2) 

Incompressible shape factor, 6*/0 

Shape factor based on ~*, defined by Eq. (24) 

Shape factor based on ~:, defined by Eq. (26) 

Shape factor based on 0", defined by Eq. (25) 

Shape factor based on 0 e, defined by Ho e = 0Q/0 

Mach number 

Static pressure 

The heat flux component 

AEDC-TR-84-7 
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~GO 

Re/c 

Re0 

I1 

V 

X 

XI,X2,X3 

Y 

Free-stream dynamic pressure, ~ou2/2 

Reynolds number based upon airfoil chord length, O~u=c/~,® 

Reynolds number based upon the momentum thickness, OeUe0/~ 

Time 

Velocity in the x-direction 

Velocity in the y-direction 

Coordinate along body surface 

Arbitrary orthogonal coordinate system 

Coordinate normal to the body surface 

Greek Symbols 

O~ 

7 

8" 

0 

O* 

0e 

Angle of attack 

Ratio of specific heats 

Kronecker delta 

Boundary-layer displacement thickness, defined by Eq. (13) 

Boundary-layer velocity thickness, defined by Eq. (18) 

Bulk viscosity 

Boundary-layer momentum thickness, defined by Eq. (14) 

Boundary-layer energy thickness, defined by Eq. (19) 

Boundary-layer density thickness, defined by Eq. (15) 

Second coefficient of viscosity 
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/t 

-<Qu 'v '  > 

(Ov). 

OJ 

Subscripts 

0 

QO 

Superscripts 

(--) 

Molecular or first coefficient of viscosity 

Kinematic viscosity coefficient 

Density 

Reynolds stress 

Local normal mass flux, defined by Eq. (30) 

Deviatoric stress tensor 

Total shear stress 

Denotes the viscous stress tensor 

Relaxation parameter in Eq. (31) 

Boundary-layer edge conditions 

Wall conditions 

Free-stream conditions 

Low speed or incompressible value 
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